苏州艾佳斯仓储物流设备有限公司
联系人:陶先生
手机:13732671248
传真:0512-55256769
QQ:826333149
邮箱:hj@ajshj.com
地址:苏州高新区天灵工业园1218号
网址:www.www.ajshj.com
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。 勾股定理现约有500种证明方法,是数学定理中证明方法较多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的较重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,较早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和在欧几里得的《几何原本》一书中给出勾股定理的以下证明。设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。 在这个定理的证明中,我们需要如下四个辅助定理: 如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS) 三角形面积是任一同底同高之平行四边形面积的一半。 任意一个正方形的面积等于其二边长的乘积。 任意一个矩形的面积等于其二边长的乘积(据辅助定理3)。 设△ABC为一直角三角形,其直角为∠CAB。 其边为BC、AB和CA,依序绘成四方形CBDE、BAGF和ACIH。 画出过点A之BD、CE的平行线,分别垂直BC和DE于K、L。 分别连接CF、AD,形成△BCF、△BDA。 ∠CAB和∠BAG都是直角,因此C、A和G共线,同理可证B、A和H共线。 ∠CBD和∠FBA都是直角,所以∠ABD=∠FBC。 因为AB=FB,BD=BC,所以△ABD≌△FBC。 因为A与K和L在同一直线上,所以四边形BDLK=2△ABD。 因为C 、A和G在同一直线上,所以正方形BAGF=2△FBC。因此四边形BDLK=BAGF=AB2。 同理可证,四边形CKLE=ACIH=AC2。 把这两个结果相加,AB2+AC2=BD×BK+KL×KC 由于BD=KL,BD×BK+KL×KC=BD(BK+KC)=BD×BC 由于CBDE是个正方形,因此AB2+AC2=BC2,即a2+b2=c2。 此证明是于欧几里得《几何原本》一书第1.47节所提出的。 由于这个定理的证明依赖于平行公理,而且从这个定理可以推出平行公理,很多人质疑平行公理是这个定理的必要条件,一直到十九世纪尝试否定第五公理的非欧几何出现。 勾股数组 任意一组勾股数 ![]() ![]() ![]() ![]() ![]() ![]() 定理用途 中国公元前十一世纪,周朝数学家商高就提出“勾三、股四、弦五”。《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。[2] 公元三世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。后刘徽在刘徽注中亦证明了勾股定理。[2] 外国远在公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。美国哥伦比亚大学图书馆内收藏着一块编号为“普林顿322”的古巴比伦泥板,上面就记载了很多勾股数。古埃及人在建筑宏伟的金字塔和测量尼罗河泛滥后的土地时,也应用过勾股定理。[6-7] 1876年4月1日,加菲尔德在《新英格兰教育日志》上发表了他对勾股定理的一个证法。 1940年《毕达哥拉斯命题》出版,收集了367种不同的证法。
|
上一条:苏州市关停淘汰化工企业百余家 | 下一条:浙江江苏等11省区市高温持续 局地可超40℃ |